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Compact Finite

Volume Methods for the Diffusion Equation*

Milton E. Rose

Department of Mechanical Engineering

N.C. A&T State University

Greensboro, NC 27411

Abstract

We describe an approach to treating initial-boundary value problems by finite

volume methods in which the parallel between differential and difference arguments is closely

maintained. By using intrinsic geometrical properties of the volume elements, we are able to

describe discrete versions of the div, curl, and grad operators which lead, using summation-by-

parts techniques, to familiar energy equations as well as the div curl -- 0 and curl grad -- 0

identities. For the diffusion equation, these operators describe compact schemes whose

convergence is assured by the energy equations and which yield both the potential and the flux

vector with second order accuracy. A simplified potential form is especially useful for obtaining

numerical results by multigrid and ADI methods. The treatment of general curvilinear coordinates

is shown to result from a specialization of these general results.

*This research was sponsored by the National Aeronautics and Space

Administration under NASA Contract No. NAG-1-812 and by the Air Force Office of Scientific

Research under Contract No. AFOSR F49620-89-C-0010.
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Compact Finite

Volume Schemes for the Diffusion Equation

Introduction:

Let V be a domain with boundary surface S on which n is the outward unit normal.

This paper describes a finite volume scheme for solving the diffusion equation for a potentiald_

and fluxu in the form

D.E. _ = divu - f, inV

grad qb= u

B.C. ctu-n +1_= g onS, t>0

I.C. _ = go in V, t ---0

in both the steady and unsteady cases. We recall that the solution of this problem satisfies an

'energy' equation

kl\

dfv _)2 dV +fV u'u dV= fs _u'dS -SV qbf dV

which follows by multiplying the first equation in \1\ by dpand integrating by parts. We also recall

that when f = 0 the maximum-minimum values ofqb either lie on the boundary S or, in case t = 0,

in V itself.

A discrete form of these results will hold for the finite volume scheme and includes

results about generalized curvilinear coordinate mappings as a special case. We will identify finite

volume operators div h, grad h, and curl h which are consistent with their differential counterparts

and from which a discrete energy expression corresponding to \4\ will follow by simple

summation-by-parts identities. The important identities div h curl h -- 0 and curl h grad h -- 0 will

also remain valid, as we will show at a later point in the paper. A potential form involving the
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operator div h gradh_, which is obtained by eliminating u, leads to a symmetric, positive definite

operator to which multigrid and other fast solution techniques are applicable.

The fact that the f'mite volume schemes described here lead to discrete energy

expressions is the principal result of this paper. It insures that the schemes converge. We will also

fred that the approximations to both _ and u will be second order accurate. This result is similar to

that obtained for mixed finite element methods ([ 1], [8]) and it is possible, in fact, to view the

present scheme as a finite element method which involves non-conforming elements ([2],[4]).

Many of these ideas can be illustrated most simply for steady, one-dimensional

problems, for which reason we first discuss the equations tb"= u, u "= fin detail. We will fred it

natural to introduce a pdmarymesh, which is formed by the endpoints of subintervals into which

the basic domain is divided, and a dualmesh, which is formed by the centerpoints of the primary

mesh. The variables _ and u will be associated with the primary mesh while another variable

will be associated with the dual mesh. An algebraic relationship between _, t_ and u on each

subinterval provides an approximation to the solution operator (for which reason the scheme is

called compact) and the solution in the large is obtained by imposing continuity conditions for_

and u at points of the primary mesh. Both _ and _ will be found to converge with second order

accuracy to the solution at the points at which they are defined. Furthermore, as noted above,

although u will be defined by one-sided divided differences involving qband _, its convergence

will also be second order accurate as a result of the continuity conditions imposed.

In extending these ideas to higher dimensional problems by subdividing the '_

solution domain V into volume elements we will also find that a primary and dual grid play a

natural role. Now the variables _ and u will be associated with the centerpoints of the faces of a

volume element while _ will be associated with the center of the element. However, an additional

variable _ (or a box-variable X) which is associated with the edges (vertices) of the element will

also be required. The compact scheme will describe relationships between these variables which

produce second order accurate results at the points indicated. In the method discussed here, the
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non-tangential components ofu on a face of an element are obtained with the use of one-sided

differences in terms ofqb and _ while its tangential components are determined solely by the edge

values _, and these are obtained in terms of_ at points of the dual grid by bilinear interpolation. In

the case of(uniform or nonuniform) Cartesian or orthogonal coordinate elements, the variables

as well as the tangential components ofu on faces of elements can be obtained by postprocessing,

if required.

Some of these ideas are familiar from applications of finite volume methods to fluid

dynamics and are described in Peyret and Taylor [5] and in a review paper by Vinokur [9]. A

focus of many such methods is on the treatment of conservation laws for inviscid fluids. As noted

by these authors, the primary and dual grids often play a role in many such schemes whenever

gradient terms are included, as occur when viscous effects arise. Indeed, the need to accurately

approximate quantities like the stress tensor at boundaries of general domains is a principal reason

to resort to finite volume methods, although their use may add significantly to the cost of

computations. To understand some of the problems which can arise, the diffusion equation can

serve as a useful model. We will find that the relationships between grid variables differ in

important respects from those described elsewhere. Many schemes place primary emphasize on

the vertex (box) variables and most methods deliberately avoid the use of one-sided differencing to

approximate the flux except, perhaps, at boundaries. Although compact schemes related to those

described here have been used for Cartesian grids, e.g., [2], [7], the roles of the variables were not

completely developed.

The paper concludes by describing the rather staightfoward modifications which are

required to treat the time-dependent problem. The result is a Crank-Nicholson-type scheme and

energy arguments provide convergence estimates for the finite volume method. We are also able to

show that energy arguments can be adapted to a Peaceman-Rachford ADI scheme.

This paper reflects many valuable insights gained through discussions with
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colleagues.

G. Strang.

I mentionwith particular appreciation T.B. Gatski, D. Gottlieb, H.-O. Kreiss, and
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I. Steady One-Dimensional Problems

I. 1. Notations

D.E.

B.C.

The associated energy equation is

On an interval [1_, 1+] consider the problem :

u'= f kI. la\

_'=U

= g, for x = 1±. Xl.lb\

fqbfdx+fu2 dx = (Oa)l+ - (flU)l_ kI.2k

Divide [1_, 1+] into M non-overlapping subintervals Ij --- {x[ xj_ 1/2 < x < xj+ 1/2}

with centerpoints xj, j= 1/2, 3/2,..., M- 1/2. The points xj, j= 1,2,...,M- 1, are endpoints of the

subintervals which lie interior to [1_, 1+]. We let Ie, Ic denote the sets of indices corresponding to

these points:

Ie = { 1, 2, ..M- 1} (interior endpoints)

I c = {1/2, 3/2,...,M - 1/2} (centerpoints).

We adopt the finite-difference notations Ax i = xi+ 1/2 - xi-1/2, hi = Axi/2, u(x i) = u i. By ?

introducing the central average and difference operators

VtCj--- ( ¢j+I/2 + q- I/2)/2, A d_j- ( qbj+1/2 - Cj- 1/2). kI.3k

we can verify the summation-by-parts identities

A(¢_) = (la¢) (A_) + (A¢) (_a_) q.4a\

/a(_¥) = (taqb) (_W) + (Adp) (Ate)/4. kl.nb\

Both will play a central role in establishing energy results.
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Ax
h

! I. 1

4_,u ql 4_,u

Figure 1. An interval showing the association of the variables _, u with its endpoints and

Of t_ with its centerpoint.

1.2. A Compact Scheme

In each subinterval Ij, construct an approximate solution using values _+1/2 as

boundary data. Specifically,

(i) forj E Ic set

Auj - Uj+l/2 - Uj_l/2 = Axj fj kI.5_

hj uj+ 1/2 = (_+ 1/2 - _j) U.6a\

hj Uj_l/2 = (_j - qbj_l/2) 'XI.6b\

Adopting the convention that t_j indicates an approximation to the potential solution at the center of

the interval, while _j+ 1/2 indicates the approximation at its endpoints we see that kI.SN is a central

difference approximation to u "= f, while kI.6X,approximates dp'=u by one-sided differences. Then

eqsXI.SN, kI.6", can be solved for uj+ 1/2 and _j in each interval in terms ofqbj+ I/2 considered as

boundary data. 2

(ii) Next, require that both u and dpshall be continuous across every endpoint common to two

intervals, i.e.,

[uli = [_]i =0 for i _ Ie (endpoints) kl.7_

(This is implied by our notation, since we have not distinguished between the right- and left-hand

limits ofu and _ at endpoints.) Using kI.6k to evaluate ui+ 1/2 at the fight and left endpoints of the

adjacent intervals I i_ I/2, Ii+ 1/2 we find
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Axi+1/2ui+ 1/2 = (Wi+l - _i-1 ) i c Ie q.8X

which indicates that the accuracy ofu may be higher than that suggested by the one-sided

difference expressions which originally defined u in q.6\. Also note that q.6_ can be used to

express the continuity condition [u] i -- 0 in terms of_, _ with the result

(_i - _i- 1/2 )/hi- 1/'2= (¥i+ 1/2 - _)/hi+ 1/2 \I.9a\

and which, in the case of equal intervals, reduces to

_i = la_i i E Ie (endpoints) \l.9b\

The addition of the boundary conditions leads to a determined system of algebraic equations for the

M values of_ and the M+I values ofqb and u.

The special nature of this system is worth noting. By eliminating u from kI.5'x using

kI.6_ we find, in the case ofequal intervals,

(la_ - ¥i ) = 2h2f

and if we also write the continuity conditions _I.9b\ in the form

(V_i - _i ) = 0

i c I c (centerpoints) _I. 10a\

i E I (endpoints) _I.10b\e

it is evident that d_i, Wi are the odd-even components of the solution vector ofa tri-diagonal system

of equations which is, thus, easily solved. In sharp contrast to \I. 10\, the standard finite difference

scheme for solving X/. 1\ is

(la_ - tFi) = h 2f i E Ic O Ie _I. lOc\

so that some differences with standard numerical treatments of differential equations are to be

expected using the schemes considered in this paper.
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1.3.The Energy Equation and Convergence:

We will now show that this scheme leads to a discrete form of the energy equation

For simplicity, we will assume a uniform mesh. Add and subtract the expressions

(/LX/2) uj+_1/2 = +-(__+1/2 - _j)

given in kI.6X, to obtain

Yj = iJ_j - Ax Auj/4

and we see that the approximations to_ and _ are second order with respect to the center of an

interval. Then, starting with

Auj = Ax fj,

multiplyby _ and usc kl.II\and X/.4ktoobtain

¥ Au = (pqb- (Ax/4)Au).Au

= A(_m) - (luu A_ + (Ax/4)(Au) 2)

= A(d_u) - ax ((lau) 2 + (Au)2/4)

= A(¢u) - Ax.(u2).

Ax luuj -- Aqbj XI. 1 la\

_I.1 lb\

kI.SX

XI. 12\

(Here and in the following we omit subscripts when no confusion is likely to arise). Summing

over centerpoints of intervals

_"Ic ( _J AuJ + Ax lauJ2) = (¢ul_ - if" Ie [qbu]i

Because of the continuity conditions, the jumps [ ] vanish and we obtain the discrete energy

expression
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_'I_ ( *J _ + 'uJ 2)Ax = (_)l
\l. 13k

This result will enable us to conclude that _, qJand u converge with second order

accuracy. Introduce centerpoint and endpoint norms as follows:

[[_[[c "- (EIc _AXX )1/2 'kI.14a\

Ilull_ = ((Uo2 + ur_ +_'l_ uJ_)Ax )1/2 XI. 14b\

By summing kI.8\ and using _I.6\ we find

- ¢o + Y%ui---- lU0qJj+ 1

and if we also assume endpoint conditions _ = qbM = 0 we obtain the inequality

II_ IIc-<C IIu lie.

The energy expression itself leads to the estimate

IIu 112-II tvllc IIfile

while the continuity condition _I.9\ results in

11_ lie<--IItv I1¢.

Thus,

IItp I1_<--C2 IIfile

IIu lie-<C IIfile

I1_ lie-<CZll fll_.

Applying this to the homogeneous problem we conclude that u=dp=_=0. Thus the

algebraic problem has a solution which is unique. Next, interpreting fas the truncation error,
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f = O(Ax2), and we see that qb, ¥, and u converge with second order accuracy.

This conclusion about the second order accuracy of u applies not only to its values

ai interior endpoints, as might be expected from kl.8_, but also to the values u0 and u M at the

endpoints of [1_, 1+] itself and which, we recall, were def'med in eq. kI.6Xby one-sided difference

expressions.

Table 1 presents computations which verify these conclusions for the differential

equation \I. 1\ corresponding to the solution _ -- x2(l-x) 2. Note that the errors are measured at the

endpoints of intervals.

Table 1.

Error Norms

# intervals II_ror lie II Uerror lie

6 1.234 e-2 1.851 e-2

12 3.472 e-3 9.259 e-3

24 8.680 e-4 2.893 e-3

48 2.170 e-4 7.957 e-4

96 5.425 e-5 2.080 e-4

192 1.356 e-5 5.312 e-5

Finally, we remark that more general boundary conditions involving both u and qb

also lead to the same conclusions.

1.4. The Potential Form:

By eliminating the flux u in q. 1\ we obtain the familiar second order equation ¢"= f

which we call the potential form. The difference scheme which corresponds to this may be

Compact Finite Volume Methods -(3.2)

Sat, Sep 16, 1989

13

M.E. Rose



obtainedby eliminating u in the scheme just described. To illustrate, using q.6k, eliminate u in

Auj--Ax 
to obtain

h2fj = (VCj- Yj), j c Ic

h = Ax/2 •

As we have seen, for uniform meshes the continuity conditions [u] = 0 result in

= lu_. i E Ie

To these are to be added the boundary conditions

kI.5X

M.16\

M.9b\

qb0 = g-' _ =g+

When f = 0 we obtain

and the maximum-minimum property of the solution is an immediate consequence. This can be

used to develop an alternate proof of convergence.

The potential form for the discrete problem can be seen to arise as a variational

problem associated with the discrete energy equation. The maximum-minimum property reflects

the fact that the associated algebraic problem is symmetric and positive definite. In the general

treatment, the potential form will be more suitable for numerical work, while the general form

involving _, _ and u as a first order system will prove more convenient for theoretical discussions,_

particularly for the development of energy estimates.
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II.A Compact Finite-Volume Method

We now turn to problem of treating the boundary value problem corresponding to

the steady-state solution of\l\when V is a general volume. Our objective will be to partition V

into volume elements _V in such a manner that the prescribed boundary data on S can be accurately

transmitted to the boundary elements and then, by solving a discrete boundary value problem in

each element corresponding to a compact scheme, obtain an approximate solution in all elements

which also satisfies an energy expression, thus insuring convergence. As a result, we expect to be

able to treat problems posed in curvilinear coordinates as a special, but important, case.

In order to be able to generalize the arguments given earlier, a number of additional

notations will have to be introduced. Before doing so, we will first present a short overview of the

principal ideas which will be involved. The more detailed discussion and demonstration that the

final result again leads to an energy expression and thus produces a convergent scheme may be

omitted if the reader wishes to turn to the discussion of the time-dependent problem given in Part

III.

II. 1 An Overview:

Guided by the earlier discussion of the one-dimensional problem, we may identify

the following requirements to construct a discrete approximation to div u = f, u -- grad _ when

volume elements are involved:

(i) construct consistent, discrete approximations to div u, grad dpin a volume

element 5V in terms of variables associated with u and _ at appropriate points of 5V,

(ii) further relate these variables as may be required so as to lead to a determined
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and consistent system of algebraic equations from which u and _ can be determined whenever

boundary conditions are prescribed on S, and

(iii) develop a difference calculus which allows summation-by-parts identities to be

applied to volume elements and thereby lead to a discrete energy expression from which a

convergence argument can be constructed.

Figure 2. A normal volume element; P, Q,R, are the centers ofthe volume _V, a face _S, and an

edge on which T is a vertex. Shown at Q is a basis [e] and e 1 , the unit normal to _S.

We will confine our attention to hexahedral volume elements _V, although we will

allow certain of its vertices to coalesce, thereby including tetrahedra and related elements in our

discussion. Figure 2 indicates the centerpoint P of_V, the center Q of an oriented face _S, and a

representative centerpoint R of an edge of_S on which T is a vertex. In addition to the variables

_Q), _(P) introduced in our discussion of the l-dimensional problem, we will also associate

another variable _(R) with points R. These variables will approximate the potential solution at the
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points indicated. Later, we will also associate a variable X with the vertex points T. Section II.2

introduces notations which allow us to describe various geometrical properties of an element and

from which averaging and difference operators, corresponding to x,I.4_, can be introduced.

Section II.3 describes discrete approximations to the operators div and grad. The

approximation to div u is based on the use of Gauss' Theorem in a volume element. Centerpoint

quadrature approximations to the surface integrals involved leads to a discrete operator div h which

provides an intrinsically consistent, second order accurate, approximation to div u in terms of the

normal components ofu at centerpoints of faces 8S. This is a familiar idea in finite volume

methods. An approximation to u = grad qbwill result from the integral form

fC u-dx = _b(B)- 4)(A)

inwhich thepointsA and B are identifiedwith thepointsP, Q, and R inFigure2. A midpoint

evaluationof theintegralwilldeterminetwo tangentialcomponents ofu lyingina surfaceclement

interms ofthevariable_ atedges ofSS(Q). The remainingnon-tangentialcomponent ofu on dS

willresultby using pointsP and Q and a one-sidedevaluationof theintegralatQ. This

approximation willleadtosecond-orderaccuracyas a resultofimposing additionalcontinuity

conditionsforthe variableson 8S, asoccurred inthe l-dimensionalcase. We indicateby gradh_b

thevectoru evaluatedateach faceusing thisconstruction.

The compact scheme which emerges is described in II.4 and can be summarized as

follows:

(a) In each element u, _, ¥, _ satisfy div h u = f, gradhqb = u, in which the normal components of

u arising in div h u are to be evaluated in terms of the components given by gradhqb.

(b) Across each oriented face 5S impose the continuity conditions [u.SS] = [_] = [_] = 0.

(c) If_SS lies on the boundary S of V, then ¢_and _ are to be prescribed by the data.

These conditions exactly mirror the situation discussed for the 1-dimensional

problem. However, we shall find that they lead to an underdetermined system of algebraic
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equationsand certain additional conditions will be required. These are furnished by the

(d) completeness conditions: These conditions determine _ at vertex points in terms of the variable

tp by the use ofa bilinear interpolation which we indicate as _ = _ (_). Among other things, This

will insure that is _ bounded in norm by t_.

This scheme will lead to an energy equation and convergence will be assured. The

potential form will also show that the maximum-minimum property also holds.

When curvilinear coordinates are used, many of the geometrical constructions

required for elements will be provided analytically. Furthermore, for Cartesian or more general

orthogonal grids, we will find that the variable _ can be obtained by postprocessing the results

using the completeness conditions. This emphasizes the practical advantages of utilizing regular

elements throughout most of the domain V and restricting the general construction to boundary

elements.

11.2. Geometrical Considerations and Notations

11.2.1. Normal Volume Elements

We call {SV} a nonnalcovedng of V by volume elements 5V, themselves called

normal, if: (i) each element is a hexahedron, some of whose face areas may be allowed to vanish

providing its volume r remains positive (degeneracy), (ii) any face of a boundary element 5V

which is in contact with the boundary surface S of V is tangent to S at the centerpoint of the face.

The first assumption has important consequences for the geometrical constructions which will now

be described.

Figure 2 indicates a normal volume 5V element with center at P and surface

elements 5S. Since _SV is a hexahedron, P may be found as the average of the verticies of_SV,
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while theaverage of the vertices on a face yields the centerpoint Q and the average of the vertex

points on an edge yields the centerpoint R. We may thus construct a righthanded, local coordinate

basis

[e(P)] -- (e I(P), e2(P), e3(P))

at P which is formed by unit vectors in directions which connect the pairs of opposite centerpoints

of the faces _5S which we denote as Qi +, i = 1, 2, 3. The face 5S(Qi.) is assumed oriented into

/SV, while 5S(Qi+) is outward; these are sometimes called intlowand outtlow faces. We also

assume that the orientation carries over to neighboring elements by requiring that an outflow face

from one element be an inflow face on its adjacent neighbor.

Our primary requirement will be to evaluate the vector u(Q) at the centerpoints of

faces. In order to do this we will construct a unit basis [e(Q)] at each Q as follows: assume that

_S(Q) is the outflow face of SV(P) and the inflow face of a neighboring element _iV(P'), e.g., Q =

QI+. We take el(Q) as a unit vector in the direction of a line connecting P and P'. Also take

e2(Q), e3(Q) as unit vectors in directions which connect Q with the centerpoints of the edges R of

_S(Q) so that [e(Q)]forms a right-handed basis as indicated in the Figure 2. Thus, e2(Q), e3(Q)

are tangent vectors on _S(Q) while e l(Q) is non-tangential.

We may regard the points indicated as being related by displacement operators Ei+

along a direction e i so that

Qi+ = Ei+ P, Ri+,j+ = Ej+ Qi+

with the further understanding that (i, j, k) indicates an even permutation of (1,2,3). The

averaging and difference operators defined earlier by\II.3\ may be generalized by writing

lai(D(C ) ---(qb(Ei+C) + qb(Ei_C))/2, Ai ([_(C) -(qb(Ei+C ) - qb(Ei_C)) \II.l\

for a representative centerpoint C. From this it is apparent that the summation-by-parts identities

kI.4\ continue to hold.

Motivated by this notation we will write also Aix(Q) to indicate the distance
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between the points Qi- and Qi+ and write h i (Q) = Aix(Q)/2.

minimum value of hi(P) for all volume elements covering V.

Also, h itself will indicate the

11.2.2. Covariant and Contravariant Bases on 5V

A basis [e] -- (e 1 , e 2, e 3) maybe considered as a covariantbasis from which a

reciprocal contmmriantbasis [e]-1. (el, eJ, e k) can be constructed satisfying

e i = (ej× e k)/4"e, e i = 4"e.(eJx ek), ei.ej = _Sij klI.2_

in which, if eij =- ei.e j and eij -- ei'e.J, then

e - det (eij), 1/e = det (eij). klI.3\

Anticipating the connection to curvilinear coordinates, we call eij element metric coefficients at P.

As a result we may write

u = ]_ ui ei = ]_ uiei, klI.4\

u i = _ eijuj, ui = Z eijuJ

u-u = _ ui ui .

where u i = u.e i and u i = u.e i are the (physical) covariant and contmvariant components of u,

respectively, with respect to [e].

Using the unit tangent vectors e2, e 3 the oriented area of a face _S(Q1 +) is

5S = 1_SS['e 2 × e3.= 15SIfe'e i klI.5"x

where

1851= A2x(Q) A3x(Q)

Thus, the covariant component 5S i of SS is 5S i = 1_5S1¢e. Also, elementary geometrical arguments

based on the fact that normal volume elements are hexahedra show that if

r 0 -- Alx.A2x.A3x

then the volume measure r of 5V is given by

Z = Aix(Q) ei(P)'(SS(Qi.) + 5S(Qi+))/2 = r0"Pi_'e,

i = 1,2,3. Ifwe also assume posiive constants co and c I such that c o h 3< r <Cl h3 and also set
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-/'e0 = pi,/'e we can summarize these geometrical results as

T = I"0"4"e0, 5S i = Aj xA k x 4"e.

Finally, we also observe that midpoint quadrature rules result in

j'u.dx - u(C)-A x(C),

fu.dS ,,, u(C)'SSfC)

"" fu.dV ,',, u(C)-T.

where C is a representative centerpoint of the figure.

These facts summarize the principal properties of normal volume elements which

we shall require.

XII.6_

\II.%

II.3. The Operators div_h and grad_h.

The fundamental geometrical properties of the differential operators div, cud, and

grad stem from the following: div relates volume integrals with surface integrals, curl relates

surface integrals with line integrals, and grad relates line integrals with endpoints. We will now

describe how these properties can be systematically developed for the div and grad operators.

di__vh: Gauss' formula

f div u dV = f u-n dS

when applied on 5V using the quadrature approximations indicated above suggests the definition

"rdiv h u = Zi Ai u-SS x,II.8\

in which the difference operator applies to opposite face centerpoints Qi--. Using the component

representations for the terms on the fight,

div h u = T -1 Yi Ai ui'_Si 'XII.9\

or, noting _,II.6k,

div h u = (4e 0) -1 Zi Ai 4"e ui/Aix _lI. 10\
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rg.raddh: The approximations to be identified with u = grad _pwill follow from the line-

integral evaluation

J'cu-dx = (_B)-c_(A) kII.11\

in which A, B are endpoints of a curve C. We will describe how the covariant components ofu

with respect to the bases [e(Q)] can be determined at face centerpoints.

Tangential Components:

Recalling earlier notations, suppose e2( Q I +), e3(Q 1+) are tangent vectors to the

face _S (Q1 +) at Ql +- Evaluating kII. 1 l\ along the line connecting the centers of opposite edges

Rl+,2+ and Rl+,3+ we obtain

J'cu-dx = _ (RI+,j+) - _ (RI+,j_) j = 2,3

in which we have identified the potential variable on edges of 5S by _. Next, use the quadrature

evaluation

fcu-dx = Aj x-(u-ej(Q 1+)) = Aj x.uj (QI+)

in which uj is the covariant component ofu(Q 1+). Thus,

Aj x'uj (QI+) = _ (RI+, j+) - _ (RI+, j_) j = 2,3.

- _ _ (QI+) _I.12\

Non-Tangential Components

We will also require evaluations of the non-tangential components of u at the

centerpoints of faces and, as for the 1-dimensional case, want to evaluate these in terms of the

value ofw at the center P of_V and of_b at the centerpoints Q of its faces. Let us first introduce the

one-sided difference operators

_+ qb(Qi+) - + [qb(Qi+) - tlJ(P)], klI. 13\

Then qI.8\ leads to

J" u-ds = Ai + dp(Qi_+)

in which the line integrals are to be taken between Qi- and P and between P and Qi+, respectively.
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We then evaluate the integrals by one-sided quadrature approximations using values of u at the

faces to obtain

j" u-dx - (Aix(P)/2)-u(Qi+)-ei(Qi+)

-- (Aix(P)/2).u i (Qi +)

so that

(Aix(V)/2)'ui (Qi-) = Ai -+ t_(Qi--.) -- -+ [t_(Qi--) - t_(P)l. kII. 14_

We can summarize this construction as follows:

gradh:

ofu(Q) and values ofqb, _, and _ at points Q on the faces ofan element given by:

Tangential components:

Aj x.uj (Q) = Aj_ (Q)

u(Q) -- grad h qbexpresses the set of relationships between the covariant components

(_x/2) ui (Q) = Ai_p(Q).

Ai+qb(Q). + [qb(Q) - _P)].

Non-tangential components:

where

klI.12\

klI. 14\

'kII. 13\

Eqs.klI. 14\ should be compared to eqs.kI.6k. By adding and subtracting these terms

we obtain an equivalent form:

Aix(P) Pi ui(P) = Ai t_(P),

_(P) = lai _(P) - Aix(P) A i ui(P)/4

in which only centered operators at P are involved and which may be seen to be second order

accurate with respect to P. These forms play an important role in establishing energy results.
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II.4. A Compact Scheme

We will now return to the primary problem of solving the boundary value problem

when V is a general volume with boundary S. Following our earlier discussion, we describe a

compact scheme for solving the problem as follows:

(i) in each element _V solve

div h u = f, u = grad h _. klI. 16_

Note that div h u = fprovides one equation for the six contravariant components ofu on the faces

of the element, while u = grad h _ expresses three equations for the covariant components ofu on

each of the six sides ofiSV, in which the tangential components are evaluated in terms of the

variable _ at the centerpoints of edges while the nontangential components are determined by the

variables dpand _.

(ii) use

u i = _ eijuj Mrl. 17X

from kII.4\ to relate the contmvariant components to the covariant components arising in x,II. 16\..

An important simplification will occur in this construction whenever eij = 0, i4:j.

When this situation arises we call the scheme strongly compact, otherwise we use the term

weakly compact. For a strongly compact scheme the tangential components ofu on faces will not

affect the computation directly (and, thus, neither will the variable _) but may, if required, be

determined in terms of the variable _ by a postprocessing technique using the completeness

relationships described below. This arises when Cartesian or orthogonal curvilinear grids are

involved.

(iii) impose continuity conditions for u, d_,_ on faces common to neighboring elements. In case

5V is a boundary element, the data on S will be assumed to determine the data _ and _ on any face

tangent to S by the use of a Taylor series approximation.
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We are required to calculate u and _ at the centers of the faces of elements, _ at the

centers of the elements themselves, and _ on the edges ofthe faces. By examining a cube, we can

verify the fact that the number of unknowns involved in the system of equations resulting from the

steps just described will exceed the number of equations by just the number of interior edges of

elements, i.e., those edges which are incident to four adjacent elements. This same result will also

hold for a more general covering {_SV}. In order to make the scheme determinate we will add the

following

(iv) Completeness Conditions:

Let N(R) denote the centerpoints P of those volume elements which are incident to

an edge having R as centerpoint. Using a bilinear interpolation, express _(R) in terms of the

values _R) which are associated with the neighboring elements. The result can be written

 co(v v )

where the summation includes points P in N(R) and the weights co are non-negutive and sum to 1.

As noted above, when the scheme is strongly compact _II. 18\ will allow the tangential components

ofu on faces to be calculated separately.

II.5. Energy

and uniqueness of the solution of the discrete problem will follow.

Following the argument given for the one-dimensional case, use the summation

rules \1.4\ and also XJI. 15k to obtain

"cdiv h qbu = _i Ai _l_ui_Si

= _i [_ Ai ui 5Si + Ai _-/tiui _SSi]

-- )"i [(_ + 1/4 AixAiui) Ai ui 5S i + Aixlaiu i (laiui 5Si)]

= t_i Ai ui qSSi + _i Aix_i(ui ui 5Si)

We will now show how an energy expression can be derived. From it the existence
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or, recalling that/5S i =d'eAjxAkx,

r div h d_u = ¢_r div h u + r0 _i/ai(ui u i _e)

so that summing over volume elements yields

_V divhCu "r = )-'.Vqb divh u r+ )-'.V {_i tai(ui ui4"e)} r 0 .

Finally, using the telescoping property of the _V divh term on the left-hand side and recalling that

r = r0./'e 0, weflnd

S _u._S = _V _ divh u r + _ V u.u r klI. 19\

which is cleady consistent with the integral form of the energy equation given by eq.\4X.

Noting that klI. 18\ will insure that _ is bounded in norm by _, the same arguments as were given

for the one-dimensional problem will imply that this more general compact scheme converges and

yields second order accuracy for qb,W,_ and u.
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II.6. The Potential Formulation

We shall indicate how the scheme just described can be formulated solely in terms

of_,¥, and _, corresponding to the potential form V2qb = f. Again following our discussion of

the one-dimensional case, we write, using klI.9\ and klI.4\

r div h u = _i Ai ui qSSi

= _i Ai (_j eijuJ )_Si

or, regrouping terms:

1"div h u = _iAi eiiui BSi+ _i (Ai Y_j*i eijuJ ) BSi 'ffl.20\

Using _II. 14\ in the first summation we find

 :iAieiiui = 2YiAieiiAi% Si/gx

= 4 Y i!ui e ii dpBSi/Aix - 4 BJ(P) _iPi e ii BSi/Aix x/I.2 l\

in which the summands are evaluated at the centers of faces about the centerpoint P of the element.

The second group of terms in \H.20\ involve only tangential components of u at face centers, and

we may use \II. 12\ to express these in terms of values oft at the edges. In this manner, all of the

terms in kl-l.20\ may be expressed in terms ofthe values ofdp, _, and _ in each element. This leads

to the potentialopemtor div h grad h qb.

Since dp, W, and _ are assumed continuous across faces, the continuity conditions

for u across a face 5S i common to neighboring elements with centers at P and P" reduce to

[u i _S i] = 0.

The tangential covadant components ofu are continuous, since they are determined by _.

Recalling klI. 14\ the condition that the nontangential covariant component u i be continuous is then

(Aix + Aix') q_= Aix _'+ Aix" tit \II.22\

which may be compared to x,I.ga\
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Consider the treatment ofV2_ = 0 using a strongly compact scheme.

eij = 0, j*i and the condition div h grad h qb = 0 as expressed by using kII.20\ reduces to

_iPi e ii _ _iSi/Aix = tp(P) )-'.ilai e ii _Si/Aix

which may be written

where

-- Ei_x i

= (_i eii _SSi/Aix) / (Eitai eli 8Si/Aix),

_i ¢xi -- 1.

If we write the continuity condition _I.22\ as

= 15i ¥ + 15i" tg" 13i + [3i" = 1

we can conclude that the maximum-minimum property holds. This same conclusion can be

reached for a weakly compact scheme.

In this case

L11.23\

kII.24\

kII.25_

kII.26k

Referring to the energy expression, it will be seen that the potential form can also be

viewed as arising from a variational problem. By using the completeness relations, the

computational problem will thus reduce to determining the variables qband W associated with a

symmetric, positive definite matrix and thereby allows a variety of familiar solution techniques to

be used.

11.7. Degeneracy

Recall that the definition of a normal volume element allowed for the area of one or

more of its faces to vanish. Such degenerate elements play a natural role at the boundary S and are

especially relevant, as will be shown shortly, in treating problems in curvilinear coodinate at the

origin.

Let us suppose that a face with center Q is degenerate, i.e., dS(Q) -- 0. Referring
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to klI.8X, we see that the term involving the factor dS(Q) will not contribute to the evaluation of div h

u and, as a result, the contravariant component ofu(Q) need not be computed on the face.

In the potential form, this simply modifies the weight cx associated with the degenerate face in

klI.25X.

I1.8. Curvilinear Coordinates

We will illustrate how the discussion applies when curvilinear coordinates are used.

With their use the basis (ei, ej, ek), which was required at each face of a volume element, can be

constructed analytically, thereby considerably reducing the preliminary computational steps

required. Using the potential form, we shall also illustrate the treatment of the situation at the

origin which gives rise to degeneracy.

We indicate by x -- x(q) a mapping in general curvilinear coordinates. The vectors

dx
gi - x_II.27X

are tangent vectors on the coordinate lines formed by qJ -- const, and qk = const, so that an element

of length is determined by

ds 2 = _ gijdqidq j

in which gij are metric coefficients given by gij = gi'gj- Considering [g] = (gi, gj, gk) as a

covariant basis, a reciprocal basis (gi, gj, gk) is given as

gi = (gjx gk)/q'g

in which g = det(gij). Also, ifgij -=gi.gj,, then det (gij) = g-1.

Consider a curvilinear volume dement dV which is formed as the image of a

rectilinear volume element whose volume is dqidqJdq k. Then the edges of a face on dV given as

qi = const, are coordinate lines on which gj, gk are tangent vectors and the oriented area of the face

is

dS = (gj x gk) dqJdq k.
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We may associate a normal volume element _SVwith dV by constructing tangent

planes through the centers of the surface elements through dV. From geometrical considerations it

is evident that if we make the following identifications

Aix ei = gi dq i i = 1,2,3 NII.28N

the results of our earlier discussion will apply. If ui(g) indicates a contravariant component ofu in

the curvilinear system we find, in place ofklI. 10k,

div h u - (4"g0) -1 ]_i Ai '/'g ui(g) / dqi" kII.29\

Similarly, u = grad h _, expressed earlier bykII. 12\ and kII. 14k, now result in

Tangential components:

dqJ.uj (g) = Aj _ kII.30\

Non-tangential components:

(dqi/2) ui (g) = Ai--qb. XlI.31\

Examples

The cases of cylindrical and spherical coordinates may help illustrate these results.

Cylindrical Coordinates:

Here q = (r, 0, z) and a calculation gives 4"g = r and 4g gl 1 = r, 4"g g22 = l/r,

4"g g33 = r. The centerpoints of faces Qi_+ have the coordinates:

PI+ = (r + Ar/2, 0, z), P2+ = (r, 0 + A0/2, z), P3_+ = (r, 0, z + Az/2)

Adopting more standard finite difference notations, let _ (iAr, jA0, kAz) ---_,j,k and extend the

meaning of the spatial averaging and differencing operators p,A to this case by writing (Pr' P0'

pz ), (A r, A0, Az )" We find that in a cell with center at P = (JAr, jA0, kAz)

div h grad h qb = 4 {__!__1 [(r + At/2) (])t+l/2,j,k + (r - At/2)] (l)i_l/2,j,k

2Ar 2

+ 1--J_P0rA02(1)i,j,k + _Z2ldzt_i,j,k - (50 q/i,j,k}

qI.32k
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in which

oo_r(_L1 + 1_!_)+ 1
Ar 2 Az 2 rA02

Assuming equal spacings, the continuity conditions across faces have the form

in which V = Oar, la0, taz).

A cell with center at (At/2, jA0, kAz) has the origin as a degenerate face. In this

case we see that the coefficient of the value of the unknown _0,j,k vanishes, so that no assumption

other than boundedness at the origin is required for the scheme.

For cells not involving boundary points, we may use the continuity condition in

kII.29\to express the result solely in terms ofqr. By adopting the notation 6 = A /At, etc. to
r r

indicate divided differences, the potential operator for such ceils reduces to the form

_II.33X

divh gradh * = { 62 + lr-_rl'lr + _-2 62 +62 } q/
XII.34_

which can be seen to be consistent with the familiar differential form in cylindrical coordinates.

However, we emphasize again that the boundary conditions involving qbcannot be handled directly

from this form but must, instead, be developed using kII.30\ directly.

Spherical Coordinates:

In this case q = (r, q0, 0) and a calculation shows 4g = r2 sin qowhile

q-g gl 1 = r 2, 4"g g22 = sin q0,4g g33 = 1. Again assuming a uniform mesh spacing, we find in

an element with center at P = (r, qo, 0) that
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in which

div h gradh _ = 4 {sin)( [(r+Ar/2)2_+ll2,j,k+(r_Ard2)2t_i_ll2j,k]
r2sinx - 2Ar 2

+ --J--_[sin(x + Ax/2)_i,j+l/2,k + sin(x - AX/2)_j_I/2,k]
2rAx

2ILl 0(_i,j,k - O0 ll/i,j,k}

k[I.35_

Oo = {-!-1 (r2+ Ar2/2)sin× +-_sin× cosA×/2)+ 1 }.
Ar 2 A X A02

With p = (Pr' lax' B0) the continuity conditions again lead to dp= laW. We see that

the situation at the origin is exactly similar to that in the previous example; in particular, only the

boundedness of the solution at the origin is required. Away from boundary cells, the continuity

conditions can be used to reduce matters to the form

At ¥ - At { (r 2 + Ar2/2) sin× _52 + 2 sinx _rPr
rZsinx

+ sinx cos AX/2)_ 2 + _2o } ¥ kII.36_

which can be seen to be consistent with the potential form of the diffusion equation in spherical

coordinates. We again add a precautionary note about attempting to treat the boundary conditions

involving ¢ from this form.

11.9. The curl. h Operator

In our treatment ofu -- grad h qb,emphasis was placed on evaluating the tangential

components of u at the center Q of each face 5S using a covariant basis [e(Q)]. Using qI. 12k,

these were expressed in terms of the variable _ which was associated with the centerpoints of the
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edgesof the face. The completeness conditions \II. 18\ were then used to relate _ to W. The

contravariant component ofu which arose in the definition ofdivhu were evaluated in terms of

these covariant components using kII.4\

It is desirable, also, to also have a finite volume approximation to the curl operator

which we will indicate by cudhu. A satisfactory calculus would then yield both div h cudhu = 0

as well as curl h grad h qb= 0 as identities. We shall now indicate how this may be accomplished.

In Figure 2, T indicated a representative vertex of an element. Let [¢:(T)] indicate a

basis formed by the edges which intersect at T using the orientation established by [e(P)]; also let

8(R) indicate the translation of ¢:(T) to the centerpoint R ofan edge TT'. A suitable defmition of

curl h is suggested by the following:

formula

leads to

0_-8S

If t0 = curl u, then a quadrature approximation in Stokes'

f_SS t0-n dS = fc35S u-ds

A k x-Aj (u-_ k) - Aj x-A k (u-(_j)

involving the edges of a face 5S. Using component representations, we are led to define curl h in

terms of the set of contravariant components t0 i associated with the faces of 5V by means of

to =curlh u =* o0i- (Aj fik/Aj x- Akfij/Ak x) kII.32\

in which the covariant components fi = u-& With this definition the identity

div h curl h u = 0 \II.33k

J

follows by noting the cancellation of 'line integrals' along the common edge of faces. (It is also

possible to identify a vector associated with the centerpoint ofdV, say <curlhu> - Ypi00iei(P),

but this vector will not be annihilated by div h and for which reason will not be considered further

here).

As already noted, our earlier treatment ofu = grad h _ will not furnish a direct

means of evaluating the covariant components fi occurring above and thus we cannot interpret curl h
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gradh d_.In orderto overcome this, introduce a new variable X which will be defined at vertices T

and is often called a box-variable. Recalling the intrinsic definition of grad indicated by\II. 11\

we will define grad h along edges by

Aix-fi i (R) = A i X (R) XII.34\

in which Aix is the distance between vertices along an edge with direction ei on which R is the

centerpoint and A i X (R) is the difference in values ofx at the vertex neighbors of R. Then

t0i(fa)- (AjAkX -AkAjX )+ Ajx-Akx- 0

i.e.l

curl h grad h _, 0. _I.35X

This suggests a theoretical advantage in using the box-variable X instead of _ which

was used in the earlier discussions. The most direct way to accomplish this is to define the edge

variable _(R) as the average ofx at vertices neighboring R, i.e., _ -- laX, and also re-express the

consistency conditions klI. 18\ so that now x(T), rather than _(R), will be related to tp(P) at each

interior vertex by a bilinear interpolation of the form X -- _(_), which will now involve the six

neighboring elements having T as a vertex.
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llI. The Time-Dependent Problem.

III. 1 The Potential Form.

The potential form of the time-dependent diffusion equation \1\ is, with f = 0,

_t -- div grad _ _III. 1\

The discrete finite volume operator div h grad h q_corresponding to div grad _ has been shown to

yield a discrete energy expression which corresponds to the time-independent energy terms in \4\

The principal question remaining, therefore, is how to include the term _ in the numerical scheme

which will provide the approximation to the term d _ _2dV in the energy expression.

Divide [0,T] into N equal parts of width At, write tn = n At, and adopt the standard

t'mite difference notation u(nAt) = u n. Also, let Mt, At indicate the central averaging and difference

operators which effect the time index as indicated:

Mt un -- (un+ 1/2 + u n- 1/2)/2 _III.2\

At u n = (un+ 1/2 _ u n- 1/2).

From \I.4\ it is evident that

_t_n A t _un = 1 A t (_n)2. \1II.3\
2

We will consider the following three-level

A. Compact Scheme.

At _n = At div h grad h _ klII.4a_

t_n = Mtt_n klII.4b\

to which the appropriate continuity and completeness conditions kli.22\ and klI. 18\ are understood

to apply. By multiplying qlI.4\by tlJn we obtain

At (_n)2 = At ._n divh gradh _n qII.6\

in a volume element. The term on the fight-hand-side has already been shown to lead to the

energy expression x4I. 19\ Thus, by summing xdII.6_ over elements in a time-strip and using the
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impliedcontinuityconditionsacrossfaceswewill obtain

_V 1 At (tpn)2 1"+ At )-'-V un'un 1"= At _S _n un._s XIII.TX

which is the discrete energy expression which was expected.

Assuming dissipative boundary conditions in the sense of Kreiss [3], it is evident

from this result that we can conclude: both _n and_n_.d_are bounded in a discrete norm by the initial

and boundawdata. Because the scheme is consistent, this also implies that the scheme converges.

(Our previous discussion of the maximum-minimum property can allow us to conclude -

convergence as well.)

We can summarize this in several equivalent ways, in each of which the additional

continuity and completeness conditions are assumed to apply:

B: 2-ste.12:

and

tljn+ 1/2 _ wn = (At/2) div h grad h qbn+ 1/2 klII.8a\

_n+ I _ _n+ 1/2 = (At/2) div h grad h dpn+ 1/2 qII.8b\

As above, this is a two-step scheme in which the first requires solving the equations in a time strip

for c_n+ 1/2 and tVn+ 1/2 implicitly in terms of the boundary data for _tn+ 1/2) and the initial data

t_n. With these values determined, then t_n+ 1 can be determined explicitly from the second set of

equations and furnishes initial data for the next time strip.

C: l-steo:

Eliminating _n in the above scheme we find

At _n = At _t divh gradh qbn

This is a one-step Crank-Nicholson form.

kllI.9\
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Example:

Using our earlier l-dimensional notations, consider the treatment of_ = _lxxx.

We find that the 1-step scheme may be written in potential form as

At t_in = r Pt (la_in - _i n), i E I c (centerpoints) kiII.10a\

where _¢= At/h 2, h = &x/2 To this we add the continuity conditions in the form

ta_in+ I/2 _ _in+l/2 = 0 i E I e (endpoints). kiII.10b\

Comparing with ki.9\we again recognize that the variables _i, tFi are the odd-even components of a

tri-diagonal system and are therefore readily obtained at each time step.

111.2 An ADI Scheme:

Except for the one-dimensional example just considered, the basic scheme kiII.4\ is

implicit and effective solution methods must be considered in order to treat the general problem in

higher dimensions in a practical manner. It is especially desireable that a proposed method also

provide an effective means of treating the steady-state problem as well. We will now show that a

Peaceman-Rachford-type ADI scheme, using a straightfoward treatment of intermediate boundary

conditions, can solve the finite volume problem with second order accuracy in both space and time.

Again, the existence of an energy estimate will provide the key to convergence.

We will find it convenient to make a few slight changes in some of our notations. '_

First, we will let V indicate the time average of a variable v, i.e., let

v-n, _at v n kill. 11\

Also, we let

so that kII.9\ leads to

Fi n = r-lAi(un-dSi) kiII. 12\

Compact Finite Volume Methods -(3.2)

Sat, Sep 16, 1989

37

M.E. Rose



div hun _ F1 n + F2 n + F3 n.

Then, for example, the 1-step scheme kIII. 10\ can be written as

At _n = At (F 1n + F 2 n + F 3 n) klII. 13\

in which u = grad h _. Finally, we indicate by gn assumed boundary data forqb on S at time tn.

Limiting our discussion to two-dimensions, consider the following 2-step scheme:

¥n+1/2 _ _ = (At/2) (FI n+l/2 + F2 n ) XIII. 14a\

yn+l _ yn+ 1/2 = (At/2) (F 1n+ 1/2 + F2n+ 1) klII. 14b\

and note its similarity to \III.8\ Recalling our discussion of the one-dimensional example, it is

evident that the first step can be solved as a one-dimensional problem using boundary conditions

t_n+ 1/2 = gn+ 1/2. We solve the second step similarly, but with the boundary conditions

qbn+l =gn+l..

Adding and subtracting _III. 14a\ and \III. 14a\, and relabeling the time level for

purposes of later discussion, we find

_n+ 1/2 _ _n- 1/2 = At (F 1n + _- 2 n) kIII. 15a\

_n _ _ n = (At/4) ( F2 n- 1/2 _ F2n+ 1/2). kIII. 15b\

The consistency of (a) with the 1-step Crank-Nicholson form X/II. 11\ is evident, the truncation

error being O(At 2). Eq.(XIII. 15b) is also consistent with kIII.4(b)\ since the right hand term is

O(At 3). We may regard \III. 14\ either as a scheme to approximate the solution of the compact

scheme _III.4\ or as an independent scheme to solve the differential equation.

We shall show that this scheme leads to an energy estimate which is consistent with

\III.7_ to within terms of O(At2). Recalling the basic energy argument inkI. 1 l\and the definition

of Fi in _III. 12\ we find

¥'F1 = A(qbu ldS 1) -/al(ulu 1)

¥ • F 2 = A(_u2dS2 ) -/a2(u2u2)

so that by multiplying _l II. 15a\ by _- and then using \III. 15b\ we find
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l At (_n)2 r + [lal(ulul )n +ja2( _2_2)n ] = [A(q_uldS1) + A(_xq2dS2)] + O(At2).
2At

Summing over volume elements and noting that _ = _ + O(At2), etc., we again obtain the energy

expression x,III.7_ to within terms O(At2). This result is sufficient to enable us to conclude that the

ADI scheme converges and furnishes an approximation with the same degree of accuracy as the

compact scheme XlII.4\ This result is independent of any of the fixed ratios At/(Axi)2 occuring in

either scheme.

To treat the 3D problem, consider in place of_III. 14aX,,etc.,the following:

¥n+1/4 _ lvn = (At/4) (2F1 n + F2 n+l/4 )

_n+ 1/2 _ _n+ 1/4 = (At/4) (F2 n+l/4 + 2F3 n+l/2 )

_n+3/4 _ _n+ 1/2 = (At/4) (F2 n+3/4 + 2F3 n+ 1/2 )

_n+l _ _n+3/4 = (At/4) (2F1 n+l + F2 n+3/4 ).

to which the intermediate boundary conditions ¢bn+k = gn+k, k = 1/4, 1/2, 3/4, 1 apply. Then

_n+l __n = At [(Fln+l + Fln)/2 + (F2n+3/4 + F2n+l/4 )/2 + F3 n+l/2 ]

so that the scheme is consistent with the Crank-Nicholson form. Also,

(¥n+l + tim)/2 _ _n+l/2 = (At/4) [(FI n+l - F1 n) + (F2 n+3/4 - F2 n+l/4 )].

The last pair of equations, which correspond to kill. 15", in the 2D case, can provide the basis for

an energy argument, although we omit the details here.

X,lII. 16_
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Conclusions:

We have described a finite volume method which closely maintains the parallel

between differential and difference arguments. By using intrinsic geometrical properties of the

elements, we were able to describe discrete versions of the div, curl, and grad operators which led,

using formal summation by parts techniques, to discrete energy equations as well as to the

identities div h cud h u = 0 and curl h grad h _ = 0. The solution of the initial- boundary value

problem for the diffusion equation was described directly in terms of these operators by compact

schemes and the resulting energy equations insured convergence. The schemes could also be

simplified to a potential form which can offer computational advantages. Finally, the treatment of

general curvilinear coordinates was shown to result from a specialization of these results.
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